加入VIP
深度学习之美豆瓣在线阅读-深度学习之美AI时代的数据处理与最佳实践PDF电子版

深度学习之美豆瓣在线阅读-深度学习之美AI时代的数据处理与最佳实践PDF电子版

编辑点评:

深度学习之美:AI时代的数据处理与最佳实践深入浅出地介绍了深度学习的相关理论和实践,结构完整、行文流畅,是一本难得的零基础入门、图文并茂、通俗易懂、理论结合实战的深度学习书籍

20201201165412.png

本书特色

零入门。本书在介绍深度学习时,也介绍了Python、TensorFlow、M-P模型、感知机等神经网络等基础知识,从而可以让读者零基础入门。

高可读。有别于其他同类书籍的深奥难懂,本书配合近300幅手绘图片,一图胜千言,辅以大量的哲理故事,通俗易懂,独辟蹊径。

重实战。除了理论部分的讲解不落窠臼,本书还重视实战,列举了大量具有启发意义的实战案例,循序渐进,让读者通过实战获得成就感。

抓前沿。本书紧抓领域前沿,Geoffrey Hinton的新研究成果——神经胶囊网络,本书详细解读,辅以实战,让读者能够站在科研前沿。

内容简介

深度学习是人工智能的前沿技术。《深度学习之美》深入浅出地介绍了深度学习的相关理论和实践,《深度学习之美》共分16章,采用理论和实践双主线写作方式。第1章给出深度学习的大图。第2章和第3章,讲解了机器学习的相关基础理论。第4章和第5章,讲解了Python基础和基于Python的机器学习实战。第6至10章,先后讲解了M-P模型、感知机、多层神经网络、BP神经网络等知识。第11章讲解了被广泛认可的深度学习框架TensorFlow。第12章和第13章详细讲解了卷积神经网络,并给出了相关的实战项目。第14章和第15章,分别讲解了循环递归网络和长短期记忆(LSTM)网络。第16章讲解了神经胶囊网络,并给出了神经胶囊网络设计的详细论述和实践案例分析。

《深度学习之美》结构完整、行文流畅,是一本难得的零基础入门、图文并茂、通俗易懂、理论结合实战的深度学习书籍。

作者简介

张玉宏,2012年于电子科技大学取得博士学位,2009—2011年美国西北大学访问学者,电子科技大学博士后,现执教于河南工业大学。

中国计算机协会(CCF)会员,CCF YOCSEF郑州2018—2019年度副主席,ACM/IEEE会员。《品味大数据》一书作者。主要研究方向为大数据、人工智能、技术哲学。发表学术论文20余篇,国内外学术作品7部。阿里云云栖社区专栏作家,博文累计阅读逾百万次。

什么是学习

说到“深度学习”,追根溯源,我们需要先知道什么是“学习"。

著名学者赫伯特·西蒙教授(Herbert Simon,1975年图灵奖获得者、1978年诺贝尔经济学奖获得者)曾对“学习”下过一个定义:“如果一个系统,能够通过执行某个过程,就此改进了它的性能,那么这个过程就是学习"。

大师果然名不虚传,永远都是那么言简意赅,一针见血。从西蒙教授的观点可以看出,学习的核心目的就是改善性能

其实对于人而言,这个定义也是适用的。比如,我们现在正在学习深度学习的知识,其本质目的就是为了提升自己在机器学习上的认知水平。如果我们仅仅是低层次的重复性学习,而没有达到认知升级的目的,那么即使表面看起来非常勤奋,其实也仅仅是一个“伪学习者",因为我们没有改善性能。

按照这个解释,那句著名的口号“好好学习,天天向上”,就会焕发新的含义:如果没有性能上的“向上”,即使非常辛苦地“好好”,即使长时间地“天天”,都无法算作“学习"。

深度学习之美AI时代的数据处理与最佳实践PDF电子版截图

深度学习之美豆瓣在线阅读-深度学习之美AI时代的数据处理与最佳实践PDF电子版插图(1)深度学习之美豆瓣在线阅读-深度学习之美AI时代的数据处理与最佳实践PDF电子版插图(2)深度学习之美豆瓣在线阅读-深度学习之美AI时代的数据处理与最佳实践PDF电子版插图(3)深度学习之美豆瓣在线阅读-深度学习之美AI时代的数据处理与最佳实践PDF电子版插图(4)

评分及评论

无用户评分

来评个分数吧

  • 5 分
    0
  • 4 分
    0
  • 3 分
    0
  • 2 分
    0
  • 1 分
    0

评论