加入VIP
增强型分析豆瓣PDF电子书下载-增强型分析AI驱动的数据分析业务决策与案例实践

增强型分析豆瓣PDF电子书下载-增强型分析AI驱动的数据分析业务决策与案例实践

编辑点评:

增强型分析:AI驱动的数据分析、业务决策与案例实践的三位作者是来自德勤、前华为和前IBM的资深数据科学家,在大数据和AI领域至少都有10年以上的工作经验,他们将各自多年来在“构建数据挖掘模型,解决实际业务问题”方面积累的经验全部总结在了这本书中。

增强型分析:AI驱动的数据分析、业务决策与案例实践

编辑推荐

本书极具前瞻性:增强型分析是数据分析和数据科学的未来,人工智能技术为数据分析与决策赋能是未来必然发展趋势;

本书极具先进性:详细讲解了序列分析、预测分析、规范性分析、RNN、CNN、GAN等前沿的数据处理技术和人工智能技术;

本书极具权威性:本书3位作者是来自德勤、华为和前IBM的资深数据科学家,都在数据科学和人工智能领域有超过10年以上的工作经验;

本书极具实战性:本书不只是讲技术和工具,重点还有技术如何与实际的业务相结合,包含大量的实战案例。

内容简介

增强型分析是数据科学的未来,本书讲解了如何通过前沿的大数据技术和AI技术实现智能的数据分析和业务决策,即增强型分析。

全书的内容由两条主线贯穿:

技术主线:一方面讲解了预测模型、序列分析、预测分析、Prescriptive分析等前沿数据处理技术,一方面讲解了CNN、RNN和GNN等前沿的AI技术如何为数据分析赋能。

业务主线:在数字化转型的大时代背景下,如何通过数据分析实现智慧营销、智慧风险管控,实现由初级的“主动营销”到“被动营销”,再到“全渠道协同营销”等营销手段的升级应用。

本书的重点聚焦在本质内容上,即数据处理、算法及模型、“模型洞见到业务决策”的分析等。

全书共8章:

第1章:作者结合自己的从业经验介绍了数据科学家的职业生涯发展、工作模式和工作方法要点等内容,为有志成为数据科学家的读者指明了道路和方向;

第2章:从描述性分析的角度讲解了数据探索、数据预处理衍生指标加工方面的技巧;

第3章:介绍了预测类模型构建时的新方法、新思路、新工具;

第4章:讲解了序列分析的相关内容,包括序列模式、序列规则、序列预测等的挖掘与应用,用实例的方式说明了算法的原理、特点和使用技巧;

第5章:介绍了人工智能下一个阶段的重点领域,即如何应用数据分析做出优决策;

第6~8章:通过与传统模型的对比,介绍了CNN、RNN、GNN等算法的原理,通过大量的实例说明了这些AI技术在数据分析与决策领域的用法和实际效果。

本书评价

本书围绕技术和业务两条主线展开,融合了作者过往在金融业的各类“业务咨询 + 大数据+人工智能技术的应用”方案的心得与总结。相信这对于想利用大数据及人工智能技术来解决实际问题的读者会有非常大的参考价值。

——吴卫军 德勤中国副主席

鸿涛和宗耀都是我的学生,是我们西安交大毕业的非常出色的学生。他们这次付出了巨大的努力完成了这本书,并得到了出版社的很高评价,祝贺他们。“路漫漫其修远兮”,我期望他们能够在工作中继续前行,努力创造出新的天地,到达新的高度!

——朱利 教授 西安交通大学软件学院副院长

增强型分析是数据分析与决策的未来发展方向,大数据技术和AI技术已经成为智能数据分析与决策的底层驱动力,这本书非常有前瞻性,它结合规范性分析等新的大数据技术和CNN等新的AI技术讲解了如何进行增强分析。

——江敏 数澜科技CTO/《数据中台》作者

增强型分析的本质就是将AI技术应用到数据处理与分析的各个环节,终实现智能决策,是数据分析未来的必然发展趋势。这本书从技术和业务两个维度讲解了增强型分析的一些新技术和核心技术,以及如何通过增强型分析解决营销等方面的业务问题,包含大量案例,实用性非常强。

——张良均 资深大数据专家/畅销书《Python数据分析与挖掘实战》作者

本书中提到的“交给机器大量的原数据,机器直接针对特定场景给出决策建议”正是我多年来孜孜追寻的终应用方式;另外,增强型分析的描述性分析、预测性分析、Prescriptive 分析的递进式工作脉络也是我认为行之有效的工作方法,因为这种方式应用价值高、业务落地性强!这本书在数据分析工作上立意高、格局大、视野广,兼顾技术和业务两条线,是一本不可多得的能帮助数据工作人员进阶提升甚至实现质的飞跃的好书!

——宋天龙 触脉咨询合作人兼副总裁/畅销书《Python数据分析与数据化运营》作者

作者简介

彭鸿涛

德勤企业咨询总监兼首席数据科学家,德勤全球AI团队核心成员,德勤数字化转型、智慧营销、智慧风控、客户体验等核心咨询服务方案的资深顾问。

2008年加入SPSS并与跨国家团队一起进行Analytical Decision Management决策自动化工具的开发,与国内外团队一起构建了SPSS在不同应用领域的解决方案,其中某些方案现已成长为IBM的知名解决方案;2014年加入IBM GBSC部门,领导数据分析团队,针对不同客户设计和实施数据分析的方案;2016年加入IBM GBS GBS Cognitive Business Decision Support担任CTO和首席数据科学家,领导团队开发实施了有一定行业影响力的人工智能应用;2017年加入德勤企业咨询担任金融服务总监及首席数据科学家,领导团队开拓数字化转型背景下的新型咨询服务方案,期间高质量交付大型银行的数字化转型及实施相关项目并得到客户高度认可。

张宗耀

上海全应科技有限公司资深数据科学家,前华为企业智能部门资深数据科学家,前IBM SPSS 算法组件团队资深算法工程师。

2009年加入IBM SPSS算法组件团队,负责Statistic和Modeler产品的升级和维护;2012年开始大数据算法组件的设计和开发,为分布式分析引擎提供了核心计算单元,主导完成开发了分布式平台下的广义线性模型、自动建模算法、ADMM优化算法等,打造了分析引擎平台以及SPSS Modeler产品的具竞争力算法模块;2015年开始投入Spark分布式框架的算法设计和开发,主导完成开发了生存分析算法、时间序列相关算法等,丰富了SPSS产品的核心算法组件。2016年加入华为,先后就职于华为的数据挖掘团队,以及企业智能部门的机器学习服务团队和工业解决方案团队,负责算法、机器学习、实时预测、数据分析,以及行业解决方案的设计、开发和部署相关的工作。

聂磊

陕西万禾数字科技有限公司CTO,前IBM SPSS 资深数据科学家,前IBM Watson Analytics数据分析引擎技术主管及架构师。

2008 年加入IBM Analytical Decision Management团队,主导开发了业务规则引擎和基于优化技术的预测性维护解决方案;2014年加入IBM Watson Analytics团队,担任技术主管兼架构师,主导了IBM Watson Analytics数据分析引擎基于Spark技术的转换,极大提高了平台的计算能力;2017年担任IBM Cognos Analytics团队架构师,主持了自动化技术的引入

本书特点

应用机器学习、人工智能技术不仅需要理解算法原理,还需要对算法参数调优、算法使用时的数据要求、算法输出结果,以及如何在具体业务场景使用数据挖掘模型等方面都有所了解,这样才能真正发挥数据价值,产生实际的业务效果。

本书作者结合多年来给不同的大型机构"构建数据挖掘模型、解决实际业务问题”的实践,总结归纳技术、应用等方面的经验,以“介绍较新机器学习及人工智能技术”和“如何应用这些技术解决实际问题"两个方面作为本书的整体选题思路。总体来讲,本书具有如下两个主要特点。

(1)介绍较新的技术

有监督学习的建模技术早已不是只懂得算法就可以了。目前基于集成学习、Grid Search、交叉验证等自动化建模技术方兴未艾,这些技术在专门的章节作了重点介绍:基于序列模式挖掘、序列规则、序列预测等进入公众视野还较新的技术在实际业务中有巨大的价值,这些也是本书介绍的重点:对于目前比较火热的深度学习、对抗学习等内容,本书也有专门的章节进行介绍。从这些技术的特点来看,已经具备了增强型分析的部分特点,如集成学习的技术就是旨在将多个模型结合起来,达到相对于单独采用一个模型而明显改善的效果。

(2)兼顾原理与大量实例

按照深入浅出的方式介绍算法原理、参数调优及使用方法等信息,并结合实际例子展示如何使用以及使用时的思路。笔者采用“深入浅出的原理介绍+实际使用的案例"的内容安排,期望能够让读者真正了解机器学习及人工智能的技术原理、特点与使用方法,并能直接在实践中起到指导作用。

除此之外,在本书中涉及汉语直译不能达意的词汇时都是采用英语原词,方便读者能够与科技类的英文材料对应,尽量避免生硬翻译带来的疑惑。在本书的大量实例中,代码注释基本上都是英文的,这与笔者多年的编码习惯有关。

增强型分析AI驱动的数据分析业务决策与案例实践截图

增强型分析豆瓣PDF电子书下载-增强型分析AI驱动的数据分析业务决策与案例实践插图(1)增强型分析豆瓣PDF电子书下载-增强型分析AI驱动的数据分析业务决策与案例实践插图(2)增强型分析豆瓣PDF电子书下载-增强型分析AI驱动的数据分析业务决策与案例实践插图(3)增强型分析豆瓣PDF电子书下载-增强型分析AI驱动的数据分析业务决策与案例实践插图(4)增强型分析豆瓣PDF电子书下载-增强型分析AI驱动的数据分析业务决策与案例实践插图(5)

评分及评论

无用户评分

来评个分数吧

  • 5 分
    0
  • 4 分
    0
  • 3 分
    0
  • 2 分
    0
  • 1 分
    0

评论